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A model for charge transport in undoped photoexcited semiconductor superlattices, which includes the
dependence of the electron-hole recombination on the electric field and on the photoexcitation intensity
through the field-dependent recombination coefficient, is proposed and analyzed. Under dc voltage bias and
high photoexcitation intensities, there appear self-sustained oscillations of the current due to a repeated homo-
geneous nucleation of a number of charge dipole waves inside the superlattice. In contrast to the case of a
constant recombination coefficient, nucleated dipole waves can split for a field-dependent recombination co-
efficient in two oppositely moving dipoles. The key for understanding these unusual properties is that these
superlattices have a unique static electric-field domain. At the same time, their dynamical behavior is akin to
the one of an extended excitable system: an appropriate finite disturbance of the unique stable fixed point may
cause a large excursion in phase space before returning to the stable state and trigger pulses and wave trains.
The voltage bias constraint causes new waves to be nucleated when old ones reach the contact.
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I. INTRODUCTION

Nonlinear charge transport in weakly coupled, undoped,
photoexcited, type-I semiconductor superlattices �SLs� is
well described by spatially discrete drift-diffusion
equations.1,2 As in the much better known case of doped SLs,
nonlinear phenomena include formation and dynamics of
electric-field domains, self-sustained oscillations of the cur-
rent through voltage-biased SLs, chaos, etc. Experimentally,
the formation of static electric-field domains in undoped,
photoexcited SLs was already reported many years ago.3 The
first experimental observation of dynamical aspects of do-
main formation in undoped, photoexcited SLs such as self-
sustained oscillations of the photocurrent were reported by
Kwok et al.4 Due to the excitation condition, the oscillations
were damped. Subsequently, undamped self-sustained oscil-
lations of the photocurrent in undoped SLs were observed for
a type-II GaAs/AlAs5 and for a direct-gap GaAs/AlAs SL.6

Tomlinson et al.7 reported the detection of undamped photo-
current oscillations in an undoped GaAs /Al0.3Ga0.7As SL,
where the transport is governed by resonant tunnelling be-
tween � states. The evolution from a static state at low car-
rier densities to an oscillating state at higher carrier densities
was demonstrated in an undoped, photoexcited SL by in-
creasing the photoexcitation intensity.8 An investigation of
the bifurcation diagrams for undoped, photoexcited SLs
showed the existence of a transition between periodic and
chaotic oscillations.9 For a detailed review of the nonlinear
static and dynamical properties of doped and undoped super-
lattices, see Ref. 10.

Previous theoretical studies of undoped photoexcited SLs,
including studies of bifurcation and phase diagrams,11 are
based on a discrete drift model having a constant recombi-
nation coefficient.1 So far, there have been no reports on

considering field-dependent recombination or the fact that
the time scale of the electron-hole dynamics depends
strongly on the optical excitation intensity. However, the
consequences of including these effects for the dynamics of
electric-field domains can be striking. In this work, we incor-
porate into the previously studied discrete model the depen-
dence of the electron-hole recombination on the electric field
and on the photoexcitation intensity using a straightforward
model that takes into account the overlap integral between
the electron and hole wave functions. The field-dependent
recombination coefficient decreases with increasing electric
field, which has far reaching consequences.

At high photoexcitation intensities, it is possible to find
only one stable electric-field domain, not two as in the case
of a constant recombination coefficient.1 In this case, self-
sustained oscillations of the current �SSOC� may appear un-
der dc voltage bias. The field profile during SSOC can ex-
hibit nucleation of dipole waves inside the sample, the
splitting of one wave into two, and the motion of the result-
ing waves in opposite directions. These dipole waves re-
semble the pulses in excitable reaction-diffusion systems
such as the FitzHugh-Nagumo model for nerve
conduction12–15 and are quite different from field profiles for
a constant recombination coefficient.1,2,10 In an excitable dy-
namical system, an appropriate finite disturbance of the
unique stable fixed point may cause a large excursion in
phase space before returning to the stable state. When diffu-
sion is added, the resulting reaction-diffusion system may
support wave fronts, pulses, and wave trains. It is also pos-
sible to find SL configurations at high photoexcitation inten-
sities for which there exist no stable electric-field domains.
In these cases, there are SSOC, whose corresponding field
profiles are wave trains, comprising a periodic succession of
dipole waves. These cases are similar to wave trains in os-
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cillatory media such as those appearing in the FitzHugh-
Nagumo model in the presence of a sufficiently large exter-
nal current.12,15

II. MODEL EQUATIONS

The equations governing nonlinear charge transport in
weakly coupled, undoped, photoexcited, type-I SLs are

��Fi − Fi−1� = e�ni − pi�, i = 1, . . . ,N , �1�

�
dFi

dt
+ Ji→i+1 = J�t�, i = 0,1, . . . ,N , �2�

dpi

dt
= ��I� − r�Fi,I�nipi, i = 1, . . . ,N . �3�

In these equations, the tunneling current densities between
the quantum wells �QWs� as well as between the SL and the
contact regions are

Ji→i+1 =
eniv�Fi�

l
− eDi�Fi�

ni+1 − ni

l2 , �4�

J0→1 = �F0, JN→N+1 =
nN

ND
�FN. �5�

The voltage bias condition is

1

N + 1�
i=0

N

Fi = � �
V

l�N + 1�
. �6�

Here −e�0, �, �, ND, −Fi, ni, and pi denote the electron
charge, the average permittivity, the conductivity of the in-
jecting contact, the doping density of the collecting contact,
the average electric field, as well as the two-dimensional
electron and hole densities of the ith period of the SL, re-
spectively. Equation �1� corresponds to the averaged Poisson
equation. Equation �2� denotes Ampère’s law: the total cur-
rent density J�t� equals the sum of the displacement current
density and Ji→i+1, the electron tunneling current density
across the ith barrier that separates the quantum wells i and
i+1. Charge continuity is obtained by differentiating Eq. �1�
with respect to time and using Eq. �2� in the result. Tunneling
of holes is neglected so that only photogeneration and re-
combination of holes with electrons enter into Eq. �3�. For
high temperatures, i.e., kBT�	
2�n� /m�, where kB denotes
Boltzmann’s constant, T the temperature, m� the effective
electron mass, and �n� the order of magnitude of the electron
density, the tunneling current is given by Eq. �4�, in which
v�Fi� and D�Fi� are functions of the electric field given in
Ref. 10 and l=Lw+LB is the length of one SL period �Lw and
LB denote the individual widths of the quantum well and
barrier, respectively�. Even for lower temperatures, the quali-
tative behavior of the solutions of the discrete drift-diffusion
model is similar to one of the more general tunneling current
models described in Ref. 10. For D=0 and a constant recom-
bination coefficient r, Eqs. �1�–�4� describe the well known
discrete drift model introduced in Ref. 1. The indices i=0

and i=N+1 represent the SL injecting and collecting con-
tacts, and Eq. �2� holds for them with the phenomenological
currents given by Eq. �5�. The total current density follows
from the voltage bias condition in Eq. �6�

J�t� =
1

N + 1�
i=0

N

Ji→i+1 + �
d�

dt
. �7�

Photogeneration and recombination are given by ��I�
= I�3D�
�exc�Lw / �
�exc� and

r�F,I� = � nref

nin	c
�2	

0

 �2�2D�
�,F�

exp� 
�

kBT
� − 1

d� , �8�

respectively. Here I, �exc, nref, nin
�nrefLw /c, and c denote
the photoexcitation intensity, the frequency of the exciting
photon, the refractive index, the intrinsic carrier density, and
the speed of light, respectively. �2D and �3D correspond to
the two-dimensional �2D� and three-dimensional �3D� ab-
sorption coefficients. The 2D absorption coefficient is pro-
portional to the square of the modulus of the electron-hole
overlap integral for a constant electric field F �cf. Ref. 16�

�2D��,F� = �0
2D	

0



��Ek�
+ Eg − 
� + Ẽe

n�F� + Ẽh
m�F��dẼk�

� �	
−l/2

l/2

�e
n�z̃,F��hh

m �z̃,F�dz̃�2

, �9�

where Eg denotes the energy of the bandgap at the � point
and �n as well as �h solve the stationary Schrödinger equa-
tion inside one SL period, �−l /2, l /2�, for the electrons and
holes, respectively. In this equation, the electric field F is
considered to be constant and �n,h���Lw /2+ lp���=0, where
the penetration length lp� solves the cubic equation

lp�2m��V − eF�lp� �
Lw

2
� − En,h� = 1,

and therefore lp� depends self-consistently on the eigenvalue
En,h. For a fixed value of I, the recombination coefficient
decreases with increasing electric-field strength F, as de-
picted in Fig. 1.

III. DIMENSIONLESS EQUATIONS

To study the model described by Eqs. �1�–�7�, it is conve-
nient to render them dimensionless. For a fixed value of the
photoexcitation intensity I and a constant electric field
Fi=F, the stationary solution of Eq. �3� is ni= pi

=��I� /r�F , I�. We use the maximum values �n�= �p�
=��I� /r�0, I� to define typical values for ni and pi. The field
FM at the maximum of the drift velocity is a typical value of
the field when there are SSOC. Therefore, we adopt it as the
field unit �F�=FM. Similarly, �v�=vM and, therefore, �J�
=e�n�vM / l and �D�= lvM. There are two possible time scales,
the first one being tF=�FM / �J�, which balances Maxwell’s
displacement current with the current density in Eq. �2�, and
the second one tn= �p� /��I�=1 /��I�r�0, I�, which balances
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both sides of Eq. �3�. It is reasonable to choose the time unit
as the longer of the two times tF and tn. We have chosen four
representative GaAs /AlxGa1−xAs SL configurations with
10 nm wells and 4 nm barriers. The configurations are
I: x=0.25 and I=120.5 kW /cm2; II: x=0.25 and I
=302.69 kW /cm2; III: x=0.3 and I=479.735 kW /cm2; and
IV: x=1.0 and I=30.27 kW /cm2. We assume a circular
cross section with a diameter of 160 �m, a photoexcitation
intensity of 60 mW, a wavelength of 413 nm, and four dif-
ferent beam diameters yielding the previously listed values
of the laser intensity. For most of the cases listed in Table I,
tn� tF, and therefore we choose �t�= tn. All scaled variables
are listed in Table I.

We now rewrite the model equations using dimensionless
variables by defining n̂i=ni / �n�, t̂= t / �t� , . . ., where �n�, �t�,
etc. are the scales defined above and specified in Table I.
Omitting hats over the variables, the dimensionless system of
equations corresponding to Eqs. �1�–�7� read

Fi − Fi−1 = �ni − pi�� , �10�

�
dFi

dt
+ niv�Fi� − D�Fi��ni+1 − ni� = J�t� , �11�

dpi

dt
= 1 − r�Fi�nipi, �12�

�F0 + �
dF0

dt
= J, ��nNFN + �

dFN

dt
= J , �13�

1

N + 1�
i=0

N

Fi = � , �14�

J =
1

N + 1�
i=0

N

Ji→i+1 +
d�

dt
. �15�

In these equations, there are four dimensionless parameters,

� =
�FMlr�0,I�

evM
, � =

e�n�
�FM

, � =
�n�
ND

�
��I�

ND
r�0,I�

,

�16�

and the dimensionless conductivity �̂, which is here simply
denoted by �. The values of the dimensionless parameters
for the four SL configurations given in Table I are listed in
Table II. It is interesting to note that r�0, I�� I−2 and ��I�
� I so that �� I3/2 and �� I−2, i.e., � increases with photoex-
citation intensity, whereas � decreases. High photoexcitation
intensities imply that � is large and � small, whereas the
opposite holds for low photoexcitation intensities.

It is interesting to depict the phase plane corresponding to
spatially uniform solutions of Eqs. �10�–�12� with ni= pi= p,
Fi=F

�
dF

dt
= J − pv�F�,

dp

dt
= 1 − r�F�p2. �17�

Generically and for a fixed value of J, the nullclines v�F�p
=J and r�F�p2=1 intersect in one or three fixed points, de-
pending on the Al content x in the barriers. At these fixed
points,
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FIG. 1. �Color online� Recombination coefficient r�F , I� /r�0, I�
vs electric field F for the four configurations listed in Table I.

TABLE I. Units used to achieve a set of equations with dimensionless variables.

Config. x I n, p F, � t v J D r �

 ��I�
r�0,I� FM

�n�
��I� vM

e�n�vM

l lvM r�0, I�
evM�n�

FMl
kW
cm2

1012

cm2
kV
cm 10−11 s km

s 104 A
cm2 10−2 cm2

s 10−3 cm2

s
A

V cm

I 0.25 120.5 1.017 16.8 4.602 2.569 2.991 35.97 5.7 1.78

II 0.25 302.69 4.0504 14.72 18.321 0.0057 11.910 35.97 0.90026 7.0891

III 0.3 479.735 8.070 16.0 69.485 1.421 13.12 19.89 0.359 8.912

IV 1 30.27 0.2731 14.72 313.45 0.0057 8.28�10−4 7.95�10−4 90.7 5.62�10−4

TABLE II. Numerical values of the dimensionless parameters �,
�, �, and �̂ for the four superlattice configurations listed in Table I.

Config.

� � � �̂
�n�
ND

�FMlr�0,I�
evM

e�n�
�FM

�FMl

evM�n�

I 0.9713 0.0037 8.446 1.0834

II 0.6944 5.91�10−4 33.6228 1.0523

III 0.9779 4.05�10−5 70.507 1.1074

IV 1.5754 22.3714 1.2721 1.2959
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j�F� = J, j�F� =
v�F�
r�F�

. �18�

The function j�F� is depicted in Fig. 2 for the SL configura-
tions listed in Table I.

The calculations for arbitrary values of aluminum content
x show that for 0.45�x�1, there are three fixed points of
the system in Eq. �17�, one on each of the three branches of
p=J /v�F�, and the ratio of �jmax− jmin� to the average current
�jmax+ jmin� /2 is sufficiently large. As we shall see later,
some nonlinear phenomena occurring in these SLs are quite
similar to the ones observed in doped SLs: static electric-
field domains with domain walls joining the stable branches
of p=J /v�F�, SSOC due to the recycling of pulses formed by
two moving domain walls having a high-field region be-
tween them, etc. For 0�x�0.45, j�F� is either increasing
for positive F �for 0�x�0.25� or the ratio of �jmax− jmin� to
the average current �jmax+ jmin� /2 is small �for 0.25�x
�0.45�. For 0�x�0.25, there is a unique fixed point at F
=F�, which, for an appropriate value of J, may be located on
any of the three branches of p=J /v�F�. If the fixed point is
located on one of the two stable branches of p=J /v�F� for
which v�F� has a positive slope, the dynamical system of Eq.
�17� is excitable, whereas it is oscillatory if the fixed point is
located on the second branch of p=J /v�F� with v��F���
−2�r�F���0. In an excitable dynamical system, an appropri-
ate finite disturbance of the unique stable fixed point may
cause a large excursion in phase space before returning to the
stable state. When diffusion is added, the resulting excitable
reaction-diffusion system may support a variety of wave
fronts, pulses, and wave trains.12–15 A dynamical system hav-
ing an unstable fixed point and a stable limit cycle around it
is oscillatory. Again in the presence of diffusion, oscillatory
systems may support different spatiotemporal patterns.12,15,17

An undoped photoexcited SL with excitable or oscillatory
dynamics exhibits quite unusual phenomena. Under dc cur-
rent bias, it is possible to have pulses moving to the right or
to the left and periodic wave trains. Under dc voltage bias,
these pulses and wave trains may give rise to a variety of
SSCOs. Similar phenomena are observed in the case 0.25

�x�0.45 for which j�F� has a shallow valley for a narrow
interval of current densities.

IV. DC VOLTAGE-BIASED SUPERLATTICE FOR SMALL
PHOTOEXCITATION INTENSITIES

The behavior of a dc voltage-biased SL is quite different
depending on its Al content and photoexcitation intensity.
For an Al content smaller than 45%, j�F�-J in Eq. �18� has a
single zero for any value of J, and the only stable states of
the SL are stationary ones unless the photoexcitation inten-
sity is sufficiently large �cf. next section�. Let us assume that
the Al content is larger than 45% so that j�F�-J in Eq. �18�
may have three zeros for an appropriate range of J values. In
this case, the undoped SL behaves similarly to an n-doped
SL.10 The most interesting limit is that of small photoexcita-
tion intensity, i.e., ��1.

For the time scale �= t /�, Eqs. �11� and �12� can be re-
written as

dFi

d�
= J − �pi +

Fi − Fi−1

�
�v�Fi�

+ �pi+1 − pi +
Fi+1 + Fi−1 − 2Fi

�
�D�Fi� , �19�

�−1dpi

d�
= 1 − �pi +

Fi − Fi−1

�
�pir�Fi� . �20�

In the limit of large photoexcitation intensities, ��1, Eq.
�20� indicates that the pi do not depend on �. In this case, Eq.
�19� corresponds to a SL doped with a density pi, and we
may expect phenomena similar to the ones observed in an
n-doped SL. In the opposite limit of small photoexcitation
intensities, �−1�1, �=�−1t is a slow scale. The pi are func-
tions of Fi−Fi−1 determined by solving Eq. �20� with a zero
left hand side

pi =�Fi − Fi−1

2�
�2

+
1

r�Fi�
−

Fi − Fi−1

2�
. �21�

The resulting equation for Fi is then obtained by inserting
Eq. �21� into Eq. �19�

dFi

d�
= J − ��Fi − Fi−1

2�
�2

+
1

r�Fi�
+

Fi − Fi−1

2�
�v�Fi�

+ ��Fi+1 − Fi

2�
�2

+
1

r�Fi+1�

−�Fi − Fi−1

2�
�2

+
1

r�Fi�
+

Fi+1 + Fi−1 − 2Fi

2�
�D�Fi� .

�22�

This equation is similar to the one describing the electric
field in a doped SL, but now there are drift and diffusion
terms which are nonlinear in the differences Fi−Fi−1. Under
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Config III
Config IV
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σ=1.2959

J=σ F
σ=0.5625

J=σ F
σ=1.1070
σ=1.0834
σ=1.0523

FIG. 2. �Color online� Local current density j vs electric field F.
For a fixed value of the total current density J, there may be one or
three zeros of j�F�-J depending on the Al content x.
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dc voltage bias, there are SSOC mediated by pulses of the
electric field. The current density varies on a slow time scale,
whereas the electric-field profile consists of a varying num-
ber of wave fronts joining the stable constant solutions of Eq.
�22� at the instantaneous value of the current.10 Depending
on the conductivity of the injecting contact �, there are dif-
ferent types of SSOC due to the periodic generation of di-
poles or monopoles at the injecting contact. If the curve �F
intersects the bulk current-field characteristic curve j�F� be-
fore its maximum �cf. Fig. 2�, SSCOs due to recycling and
motion of charge monopole waves �moving charge accumu-
lation layers� appear as shown in Fig. 3. If �F intersects j�F�
after its maximum �cf. Fig. 2�, SSCOs due to recycling and
motion of dipole waves are obtained, as depicted in Fig. 4.
We have indicated in Figs. 3 and 4 whether there are one or
three uniform and time-independent �constant� solutions of
Eq. �17�, solving pv�F�=J and r�F�p2=1 for the instanta-
neous value of the current density J=J�t� during the SSOC.

V. DC VOLTAGE-BIASED SUPERLATTICE FOR LARGE
PHOTOEXCITATION INTENSITIES

If 0�x�0.45, the phase plane in Eq. �17� may have only
one fixed point located on any branch of the nullcline p
=J /v�F�. For small photoexcitation intensities, the only
stable state is a stationary one. However, for sufficiently
large photoexcitation intensities, an infinite, dc current-
biased SL may exhibit pulses moving downstream or up-
stream and also wave trains moving downstream.18 The
counterpart of these stable solutions for a dc voltage-biased
SL is very interesting and different from anything observed
in an n-doped SL. Our simulations correspond to SLs with
different Al contents, whose current-field characteristics j�F�
and injecting contact curve j=�F are shown in Fig. 2. In all
cases, SSCOs appear for an average bias roughly in the re-
gion of negative differential resistance �NDR�, where j��F�
�0 �e.g., �=0.5625 in Fig. 2�.

When the conductivity of the injecting contact is such that
�F intersects j�F� near the maximum thereof, it is possible to
have SSCOs that are quite different from the ones appearing
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FIG. 3. �Color online� Current vs time �a� and field distribution
vs time �b� displaying SSCOs due to monopole recycling at the
injecting contact. The injecting contact conductivity and the bias are
�=1.2959 and V=2.0416236, respectively. The other parameter
values correspond to configuration IV in Table I and are N=99, �
=22.35636, �2=1.3148, �=1.27214, and Al content x=1.
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FIG. 4. �Color online� Current vs time �a� and field distribution
vs time �b� displaying SSCOs due to dipole recycling at the inject-
ing contact. The injecting contact conductivity and the bias are �
=0.5625 and V=2.05148375, respectively. The other parameter val-
ues are the same as the ones used for Fig. 3 corresponding to con-
figuration IV in Table I.
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in n-doped SLs. For an injecting contact conductivity �
=1.05231 �cf. Fig. 2�, pulses �charge dipoles� may be trig-
gered at the injecting contact, move toward the receiving
contact, and cause SSCOs as shown in Fig. 5. For all the
instantaneous values of J�t� during these SSCOs, there is
only one constant solution of Eq. �17�: most of the times this
solution is on the second NDR branch of j�F�. Only when
J�t� is near its maximum value, the constant solution is on
the third branch of j�F�. For a constant current density, the
constant solution of Eq. �17� is on the NDR branch, which
implies that the system is oscillatory and that periodic wave
trains are possible. The realization of wave trains for a long
dc current-biased SL are displayed in Fig. 6: at any time
during SSOC, there are only two fully developed pulses
present in this SL. These pulses experience variations in their
shape and velocity when they are generated or arrive at the
contacts, but longer SLs allow for realizations of wave trains,
in which more pulses exist simultaneously inside the SL.

In the previous example, pulses always move down-
stream, from left to right. For slightly larger conductivity of
the injecting contact ��=1.107 in Fig. 2�, Fig. 7 shows that
two pulses are formed inside the SL and move with opposite
velocities toward the contacts. These pulses are similar to the
ones constructed above for the case of dc current bias �with
positive or negative velocity�, except that the current changes

slowly with time during the self-oscillation and the pulses
accommodate their form to the instantaneous value of the
current. Note that the pulses are triggered inside the SL, not
at the injecting contact. A pulse moving with positive speed
has a long trailing region, in which the field increases as we
move away from the pulse. However, there is a depletion
layer near the injecting contact, in which the field decreases
as we move away from the injecting contact. In a long, but
finite SL, a local maximum is formed inside the SL, when
the decreasing field near the contact meets the increasing
field in the trailing region of the exiting pulse with positive
speed. The current increases as the exiting pulse is absorbed
by the receiving contact, until it surpasses a critical value. In
this case, the local maximum of the field profile inside the
SL is split, and two new pulses are created. The pulse closer
to the injecting contact moves toward it with negative speed
whereas the other pulse moves toward the receiving contact
with positive speed. The upward moving pulse reaches the
injecting contact and is absorbed there before the downward
moving pulse arrives at the other contact. In this case, the
field profile close to the injecting contact is quasistationary,
and a local maximum of the field is formed when we match
this region with the trailing region of the downward moving
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FIG. 5. �Color online� Current vs time �a� and field distribution
vs time �b� displaying dipole-mediated bulk SSCOs for an injecting
contact conductivity �=1.05231 and x=0.25 �cf. Fig. 2�. These
oscillations correspond to having a finite wave train. The other pa-
rameter values correspond to configuration II in Table I and are N
=99, �=33.62275, �=5.91�10−4, V=1.22732, and �2=0.73075.
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FIG. 6. �Color online� �a� Numerically obtained field profile of a
pulse moving with positive speed followed by a wave train when
there is only one critical point in the phase plane. �b� Phase plane
showing the nullclines and the motion of the 350th QW as the pulse
traverses it. The total current density is J=1.0165 and the other
parameters correspond to configuration I in Table I.
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pulse. After the critical value of the current is reached, an-
other pulse pair is nucleated, and the same process is peri-
odically repeated.

It is interesting to evaluate in some detail the process of
nucleation and disappearance of pulses during these SSCOs.
In the current vs time diagram in Fig. 7, we distinguish dif-
ferent regions depending on the number of constant solutions
of Eq. �17� that exist for the corresponding instantaneous
value of J�t�. In region A, there is only one constant solution
on the third branch of j�F�. In region B, there is one constant
solution on the third branch and two on the second branch of
j�F�. In region C, there are three constant solutions, one on
each branch of j�F�, whereas two of these solutions are on
the second branch and one of the first branch of j�F�, if J�t�
is in region D. There is only one constant solution located on
the first branch of j�F�, if J�t� is in region E. For a constant
voltage bias, a pulse moving upstream may be generated
only if J�t� surpasses a critical value �1.007 454�, which is
located in region D. Once generated, the upstream moving
pulses persist for any instantaneous value of the current den-
sity. These SSOC are apparently weakly chaotic: we have
calculated the corresponding Lyapunov exponents and found

that there is a single positive exponent with a rather small
value of 7.9�10−6.

We have also observed SSCOs mediated by dipole waves
that nucleate alternatively at two different QWs of the SL as
shown in Fig. 8. During these SSCOs, there is only one
constant solution of Eq. �17� for any instantaneous value of
J�t�. This solution is either on the first or the second branch
of j�F�. At about t=3232, where J�t� reaches its global maxi-
mum, two dipole waves are nucleated at two different QWs.
They become fully developed pulses and move with positive
speed toward the receiving contact. When the first one ar-
rives there, the current increases so that the corresponding
constant solution of Eq. �17� is on the second branch of j�F�.
In this case, a small dipole wave is nucleated at the local
field maximum, where the tail of the first dipole meets the
depletion layer near the injecting contact. The small dipole
wave never grows into a fully developed field pulse, and it
continues advancing, until the old large dipole wave disap-
pears at the receiving contact. At this time �about 4296�, a
large current spike appears, and a new dipole wave is formed
closer to the injecting contact than the small dipole. J�t� de-
creases abruptly, while the small dipole disappears, and the
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FIG. 7. �Color online� Current vs time �a� and field distribution
vs time �b� displaying dipole-mediated bulk SSCOs for an injecting
contact conductivity �=1.107 �cf. Fig. 2�. The other parameter val-
ues correspond to configuration III in Table I and are N=61, �
=70.50677, �=4.069�10−4, V=1.269848, and �2=1.0829727.
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FIG. 8. �Color online� Current vs time �a� and field distribution
vs time �b� displaying dipole-mediated bulk SSCOs for an injecting
contact conductivity �=1.083425 �cf. Fig. 2�. The other parameter
values correspond to configuration I in Table I and are N=199, �
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newly created dipole reaches a large size and moves toward
the receiving contact. Shortly afterward, a current spike
marks the creation of another small dipole. This small dipole
travels toward the receiving contact, and it grows only when
the only existing large pulse reaches the receiving contact
and disappears. A small dipole formed closer to the injecting
contact does not grow, until the large pulse reaches the re-
ceiving contact and disappears without triggering a dipole
wave. In this case, the corresponding pulse is close to the
receiving contact. When it reaches the contact and disappears
into it, two dipoles are simultaneously triggered and become
fully developed. A scenario similar to the one previously
described follows, marked again by a large current spike.
The situation is not repeated exactly: there are small differ-
ences in the QWs at which pulses are nucleated, differences
in the size and lifetimes of the small dipoles, etc. These
oscillations also seem to be weakly chaotic, in which a single
Lyapunov exponent is small and positive.

If the injecting contact conductivity is smaller so that the
contact current �F intersects j�F� on the NDR branch
thereof, there appear standard SSCOs due to repeated dipole
pulse nucleation at the injecting contact and motion toward
the receiving contact.

VI. CONCLUSIONS

We have calculated the recombination coefficient as a
function of the applied electric field for undoped, photoex-

cited, weakly coupled GaAs /AlxGa1−xAs superlattices. De-
pending on the Al content x, the superlattice may have only
one static domain for small x or two stable differentiated
static domains for 0.45�x�1. In the latter case, a dc
voltage-biased SL under weak photoexcitation may exhibit
self-sustained oscillations of the current due to repeated
nucleation of a charge monopole or dipole waves at the in-
jecting contact and their motion toward the collector. For
high photoexcitation intensities, the walls separating electric-
field domains are mostly pinned, and self-sustained oscilla-
tions of the current occur only in narrow voltage intervals.
For small x among other unusual phenomena, there may ap-
pear weakly chaotic SSOC due to dipole dynamics in dc-
voltage-biased SLs for high photoexcitation intensities, dur-
ing which nucleated dipole waves can split in two oppositely
moving dipoles. These dipoles are pulses of the electric field
with shapes and behavior similar to pulses in excitable me-
dia, where a sufficiently large disturbance about the unique
stable domain may induce them. For other parameter values,
the unique static domain is unstable, and the underlying dy-
namics is oscillatory so that wave trains formed by succes-
sion of pulses give rise to self-sustained oscillations of the
current.
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